a2 United States Patent

Storm

US009338158B2

US 9,338,158 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)
(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

SYSTEM AND METHOD FOR SECURE
CONTENT SHARING AND
SYNCHRONIZATION

Applicant: Open Text S.A., Luxembourg (LU)
Inventor: James Storm, Waterloo (CA)

Assignee: Open Text S.A., Luxembourg (LU)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 13/651,367
Filed: Oct. 12,2012
Prior Publication Data
US 2013/0097687 Al Apr. 18,2013

Related U.S. Application Data

Provisional application No. 61/547,239, filed on Oct.
14, 2011.

Int. Cl1.

GO6F 7/04 (2006.01)

GO6F 17/30 (2006.01)

HO4L 29/06 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO04L 63/0807 (2013.01); GO6F 17/30165

(2013.01); HO4L 67/1095 (2013.01); HO4L
67/34 (2013.01)
Field of Classification Search

CPC HOAL 67/36; HO4L 29/06326; HO4L
29/0899; HO4L 29/08081; HO4L 41/0246;

HO4L 63/0807; HO4L 67/1095; HO4AL 67/34;

GOGF 17/30165

USPC i 726/9

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,921,353 BL*
8,103,742 B1*

4/2011 Murray
1/2012 Green

......................... 715/200
GO6F 17/30893
709/218

(Continued)

FOREIGN PATENT DOCUMENTS
2290536 A2
OTHER PUBLICATIONS

EP 3/2011

International Search Report and Written opinion issued for PCT/
1B2012/002473, mailed Oct. 4, 2013, 23 pages.

(Continued)

Primary Examiner — Ashok Patel
Assistant Examiner — Gary Gracia
(74) Attorney, Agent, or Firm — Sprinkle IP Law Group

(57) ABSTRACT

A flexible content sharing system may comprise a network
based application built on a client device using information
from dissociated user experience component (UXC), appli-
cation logic and execution layer (ALEL), and content distri-
bution system (CDS) payloads. An ALEL engine may com-
municate a request from the network based application to a
CDS module. The CDS module may interface the ALEL
engine and a CDS server. The ALEL engine can act as a gate
keeper and securely communicates requests from client
devices to the CDS server. The CDS server is configured to
manage and alert the ALEL of any enterprise policies that
may be applicable to the client devices connected to the
ALEL engine which, in turn, notifies the client devices to
comply with the enterprise policies. The CDS server may
synchronize any change made to the content by any of the
client devices running network based applications.

34 Claims, 8 Drawing Sheets

8. DATARESPONSE (CDS PAYLOAD)

500

| /525 515 | 520
CDS SERVER UXC SERVER ALEL SERVER
. L A [}
3. REQUEST 4. UXC RESPONSE
FOR USER {UXC PAYLOAD)
INTERFACE
5. REQUESTS FOR
510 JS, CSS, IMAGES
B ggS‘TJE$ FOR PAGE/ Y FOR BROWSER
APPLICATION
2. STUB HTML RESPONSE WEB BROWSER +
(CDS PAYLOAD) BROWSER BASED
APPLICATION e 55 TiiAae FespoNBEs
7. REQUEST FOR DATA (E.G., \ " |ALEL PAYLOAD)
FOLDER LISTS, SHARING LISTS, 4
SHARES, USER INFO, ETC.) 9. WEB BROWSER CONSTRUCTS PAGE

US 9,338,158 B2

Page 2
(56) References Cited 2010/0077216 Al* 3/2010 Krameretal 713/172
2010/0161973 Al* 6/2010 Chinetal. 713/159
U.S. PATENT DOCUMENTS 2010/0174826 Al* 7/2010 Sharma et al. 709/235
2010/0180192 Al* 7/2010 Hall GO6F 17/30905
2001/0028660 Al1* 10/2001 Carolanetal. 370/466) 715/234
2002/0038368 Al* 3/2002 Kojima et al. . T709/225 2010/0185961 Al* 7/2010 Fisheretal. 715/760
2004/0001095 Al* 1/2004 Marques GO6F 21/31 2010/0199170 Al 82010 Hoffman
715/771 2010/0246421 Al* 9/2010 Marshall 370/252
2004/0068505 Al 4/2004 T.ee et al. 2011/0088011 Al* 4/2011 Ouali 717/105
2004/0088349 Al* 5/2004 Becketal. oo, 709/203 2011/0093610 Al* 4/2011 Rezaiifaretal. 709/232
2004/0139200 AL* 7/2004 Rossi et al. ... 709/228 2011/0208631 Al 82011 Glick etal.
2005/0010901 AL* 1/2005 Udler oo, 717/109 2011/0219057 Al* 9/2011 Scoda ..o HO04L 65/105
2005/0108650 Al 5/2005 Muehlhausen . . 709/203
2006/0047693 Al* 3/2006 Kojimaetal. 707/102 2011/0285535 AL* 1172011 Barwin ..o 340/572.1
2006/0129937 Al* 6/2006 Shafron GOGF 9/4443 2012/0017112 Al* 1/2012 Broda et al. . 714/4.4
715/733 2012/0023377 Al* 1/2012 Garskof 714/48
2007/0061486 A1* 3/2007 Trinh GO6F 17/30905 2012/0136698 AL™ 52012 Kent ..ooooovvvvvvvnrnrnnnnnns 705/14.1
709/246 2012/0144202 Al* 6/2012 Counterman 713/176
2007/0186212 Al* 82007 Mazzaferrietal. 718/1 2012/0214443 Al: 82012 Daigle 455/411
2007/0245013 A1* 10/2007 Saraswathy etal. 709/223 2012/0239537 Al* 9/2012 Baker et al. .. 705/27.1
2007/0245238 Al 10/2007 Fugitt et al. 2012/0291006 Al* 11/2012 Quine 717/105
2008/0010243 Al* 1/2008 Weissman et al. .ooooovevon.., 707/2 2013/0086204 Al* 4/2013 Ghoshetal. 709/217
2008/0201118 Al1* 82008 Luo 703/2
2009/0013173 AL* 1/2009 Savage o 713/150 OTHER PUBLICATIONS
2009/0031212 A1* 1/2009 Hsucoooovveenrrne. GO6F 9/5055 . .
715/234 “On Almost Every Topic—jQuery DataTables, CMIS and Alfresco,”
2009/0063415 Al* 3/2009 Chatfield etal. 707/3 7 pages.
2009/0150570 Al : 6/2009 Tao et al. 709/249 “Update on Alfresco’s Draft CMIS Implementation,” 6 pages.
%883;81 S;g;g ﬁ} N ggggg (Siallld_well etal. GO6F17/730($7/ }g International Preliminary Report on Patentability issued for PCT
UHLIVATL oo 260231 Application No. PCT/IB2012/002473, mailed Apr. 24, 2014, 14
2009/0285284 Al 11/2009 Toma et al. pages.
2009/0327916 Al* 12/2009 Baran 715/745 . .
2010/0057834 Al* 3/2010 Mackenetal. ... 709/203 * cited by examiner

U.S. Patent May 10, 2016 Sheet 1 of 8 US 9,338,158 B2

UXC PAYLOAD (EXAMPLE)
110 -UXC
¥ - HTML5 /140
CLIENT - XML
120 | | e
7
CLIENT ALEL PAYLOAD (EXAMPLE)
APPLICATION ‘ - ALEL s 190
0 | [T - JAVAAR)
pr— e - JAVA APPLICATION
BaseD || | |
APPLICATION
CDS PAYLOAD (EXAMPLE)
-CDS
- CMIS (API) -
- PROPRIETARY CONTENT [/
MANAGEMENT SYSTEM
_ FILE SYSTEM
- RELATIONAL DATABASE
v
100 FIGURE 1
270 290
AN
ON- | 225
PREMISES | -
230
SERVER 2 7
REMOTE | &°
FIREWALL NETWORK SERVER L/
210
CLIENT |2
7

200 FIGURE 2

U.S. Patent May 10, 2016 Sheet 2 of 8 US 9,338,158 B2

J325 /315
DS SERVER »| UXC/ALEL
2. STUB HTML RESPONSE 3. REQUESTS FOR SERVER
i & (CDS PAYLOAD) JS, CSS, IMAGE
1. REQUEST FOR PAGE/ ! /310 4.JS. CSS, IMAGE
CONTENT RESPONSES (UXC
WEB BROWSER + PAYLOAD AND ALEL
BROWSER BASED | A"tOAD)
5. REQUEST FOR DATA (E.G, APPLICATION
FOLDER LISTS, SHARING LISTS,
SHARES, USER INFO, ETC.) T _7. WEB BROWSER CONSTRUCTS PAGE
6. DATA RESPONSE {CDS PAYLOAD)
S
300 FIGURE 3
415
UXC/ALEL SERVER V/
430
DISPATCH |/ |
APPLICATION UXC/ALEL /20
| PAYLOADS
CDS SERVER |425 v
/ % CLIENT
———— CDS PAYLOAD }/—> APPLIGATION L 410
REFERENCETO [/™° NETWORK
435 > 30
DISPATCH 1°3 UXC/ALEL SERVER BASED |7
MODULE
10 APPLICATION
4—{ REQUEST ’/_
v

400 FIGURE 4

U.S. Patent May 10, 2016 Sheet 3 of 8 US 9,338,158 B2

525 /515 /520
CDS SERVER UXC SERVER ALEL SERVER
x c y [\
3. REQUEST 4. UXC RESPONSE
FOR USER (UXC PAYLOAD)
INTERFACE

5. REQUESTS FOR
510 J8, CSS, IMAGES

1. REQUEST FOR PAGE/

Y s FOR BROWSER
CONTENT APPLICATION
2. STUB HTML RESPONSE WEB BROWSER +
(CDS PAYLOAD) - BROWSER BASED
APPLICATION -
6. JS, CSS, IMAGE RESPONSES

7. REQUESTFORDATA (EG,,
FOLDER LISTS, SHARING LISTS, \
SHARES, USER INFO, ETC.)

(ALEL PAYLOAD)

9. WEB BROWSER CONSTRUCTS PAGE

8. DATA RESPONSE (CDS PAYLOAD)

S
500 FIGURE 5

U.S. Patent May 10, 2016 Sheet 4 of 8 US 9,338,158 B2
 / 622
o REQUEST
UXC PAYLOAD (EXAMPLE
e {)|, 640 670
- HTMLS L
- XML ENTITY 1
ALEL | FREWALL L«_| UXC SERVER
- XML (ALEL MANIFEST AND
AUTHENTICATION TOKEN)
Je 610
CLIENT DEVICE
620 REQUEST s 624
; | (WITH ALEL AUTHENTICATION
CLIENT TOKEN)
APPLICATION
ALEL PAYLOAD (EXAMPLE
630 - ALEL () s 60 680
Vi Y /
- JAVA (API)
- JAVA APPLICATION ENTITY 2 >
NETWORK
e . |-cos < | FREWALL |« |ALEL SERVER
APPLICATION - XML (CDS MANIFEST AND
AUTHENTICATION TOKEN)
A REQUEST /626
o] (WITH CDS AUTHENTICATION
TOKEN)
CDS PAYLOAD (EXAMPLE
{) /660 590
- CMIS (API)
- PROPRIETARY CONTENT ENTITY 3 —>
MANAGEMENT SITE | FIREWALL || CDS SERVER
- FILE SYSTEM
- RELATIONAL DATABASE
/V

600

FIGURE 6

U.S. Patent May 10, 2016 Sheet 5 of 8
715
715 ¥s
\] | PLATFORM 1 PLATFORM 2
I |
UXC APP 1 UXC APP 2
] [
ﬁ 710 / 710
i i

/CUENTDEWCE

730
s
NETWORK BASED

/CUENTDEWCE

s
NETWORK BASED

730

APPLICATION APPLICATION APPLICATION
\K /
\ 770
/780 L/
ALEL ENGINE
790
/785 ;
CDS MODULE
4

700

US 9,338,158 B2

PLATFORM N

UXC APPN

715

CLIENT DEVICE

S
NETWORK BASED

730

FIGURE 74

U.S. Patent May 10, 2016 Sheet 6 of 8 US 9,338,158 B2

715 15
715 %
\J | PLATFORM 1 PLATFORM 2 PLATFORMN /
i | I
UXC APP 1 UXC APP 2 UXC APP N
! I
ﬁ 710 / 710 710
s
/ CLIENT DEVICE / CLIENT DEVICE CLIENT DEVICE
730 7301 730
S v S
NETWORK BASED NETWORK BASED NETWORK BASED
APPLICATION APPLICATION APPLICATION
\ \\Y
\ 780] 770
1/ v
ALEL ENGINE

CDS MODULE | °

CDS L

7
700 FIGURE 7B

U.S. Patent May 10, 2016 Sheet 7 of 8 US 9,338,158 B2

810

HTTP/JSON
EVENT NOTIFICATION

HTTP/ISON
AP REQUEST

CDS

CDS
HTTPUSON
BACKCHANNEL HTTPLISON MODULE
NOTIFICATION AP REOUEST 885

NOTIFIER

HTTP/JSON

AP REQUEST 880 LOAD
Vi ¢ : ‘BALANCER
' ALEL R
JS0ON
ENGINE -

CDS
CDS
MODULE
887

HTTP/JSON
AP REQUEST

HTTP{JSON
BACKCHANNEL
NOTIFICATION

NOTIFIER

HTTP/USON
EVENT NOTIFICATION

HTTP/USON
AP} REQUEST

800

FIGURE &8

U.S. Patent

May 10, 2016

LOCATION 1

9 AM: WORK ™. ™

.

.

Sheet 8 of 8

..

N AND SYNCING ENGIN

| SECURE CONTENT sHARNG |~

11 AM: WORK

FIGURE 9

. \\\ » ,,-'/ /
N s
/\\»\
,«»/ N
y L . ~
P p b N
- \)
LOCATION 2 | N
///

US 9,338,158 B2

e

7“2 PM: LUNCH

LOCATION 3
T

LOCATION 4

6 PM: HOME

US 9,338,158 B2

1
SYSTEM AND METHOD FOR SECURE
CONTENT SHARING AND
SYNCHRONIZATION

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This is a conversion of and claims a benefit of priority
under 35 U.S.C. §119(e) from Provisional Application No.
61/547,239, filed Oct. 14, 2011, entitled “SYSTEM AND
METHOD FOR DEPLOYING APPLICATIONS WITH
SEPARATION OF THE APPLICATION FROM KNOWL-
EDGE OF CONTENT DISTRIBUTION,” which is fully
incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates generally to network enabled con-
tent distribution. More particularly, embodiments described
herein relate to secure content sharing and synchronization
with cloud capable software delivery and execution.

BACKGROUND

Enterprise Content Management (ECM) refers to the strat-
egies, methods, and tools used to capture, manage, store,
preserve, and deliver content and documents related to busi-
ness processes. To this end, ECM generally covers the man-
agement of information within the entire scope of an enter-
prise whether that information is in the form of a paper
document, an electronic file, a database print stream, or an
e-mail. In one aspect, an ECM system can serve archiving
needs as a universal repository. Users can access the centrally
managed content through various distribution means. Pos-
sible examples include the Internet, extranets, intranets,
e-business portals, employee portals, e-mails, faxes, mobile
devices, multimedia services, and so on.

Enterprises are increasingly implementing ways to help
present enterprise content to users in order to improve pro-
ductivity, sales, and user engagement. Challenges arise in
sharing and syncing enterprise content. For example, tradi-
tionally, enterprise software systems must be brought offline
to do even a small upgrade to applications. Further, tradition-
ally, clients all have access to the ECM repository and the
clients and ECM are all integrally tied. Thus, if an update is
made to the ECM, the user interface (UI) to the ECM system
will also need to be updated. There is no way to alter one
without altering the other one. To do an update, the ECM
system must be down and when that is happening, no one has
access to the document. On the other hand, cloud-based sys-
tems can roll-out incremental changes to cloud applications’
user interfaces to all users and, as such, the cloud user inter-
faces can be constantly improved. This feature can be seen on
free cloud services on the Internet. Applications like Google
Docs, Twitter, and Facebook are constantly improving their
user interfaces to streamline the usability of their features.
While third party cloud services allow users to share their
files, they do not provide for secure sharing and syncing of
content owned by an enterprise in a manner that allows the
enterprise to maintain control of their content. Embodiments
disclosed herein can address the aforementioned challenges
and more.

SUMMARY OF THE DISCLOSURE

Embodiments disclosed herein provide a system, method,
and computer program product containing computer instruc-

15

30

40

45

65

2

tions for secure content sharing and synchronization which
may be particularly useful for cloud capable software deliv-
ery and execution. The system may comprise a content
engine, also referred to herein as a content sharing and syn-
chronization engine or an application logic and execution
layer (ALEL) engine, working in conjunction with a content
distribution system (CDS) module. The ALEL engine may be
configured to communicate with client applications execut-
ing on a plurality of client devices across multiple platforms.
The ALEL engine may, in one embodiment, reside on an
ALEL server. In one embodiment, the ALEL engine may
reside on a client device.

In some embodiments, the ALEL engine may communi-
cate with the plurality of client devices across multiple plat-
forms via a standardized application programming interface
(API). The API for the ALEL engine may contain a location of
aparticular content management system (CMS), content dis-
tribution system (CDS), enterprise content management sys-
tem (ECM), or the like. Within this disclosure, these terms
may be used interchangeably to refer to a system configured
to manage enterprise content on one or more server machines
in an enterprise computing environment. Also, within this
disclosure, the term “enterprise content” may refer to any
information that is owned, managed, or otherwise controlled
by an entity. Such information may include structured data,
unstructured data, semi-structured data, or a combination
thereof, and may include files in various formats and data
associated therewith. Structured data may conform to the
formal structure of data models associated with relational
databases or other forms of data tables used in an enterprise
computing environment. Semi-structured data can be a form
of structured data that does not conform to the formal struc-
ture of data models, but that contains tags or other markers to
separate semantic elements and enforce hierarchies of
records and fields within the data. An Extensible Markup
Language (XML) document can be an example of semi-
structured data. Unstructured data may not conform to the
formal structure of the data models. Examples of unstructured
data may include word processing documents, e-mail mes-
sages, pictures, audio and video files, etc.

In one embodiment, a plurality of client devices may com-
municate with the ALEL engine via the API in a standardized
data interchange format such as Hypertext Transfer Protocol/
JavaScript Object Notation (HTTP/JSON). Each of the plu-
rality of client devices may execute an instance of a client
application that comprises a user experience component
(UXC) for a CDS, application logic that receives inputs from
the UXC and that generates outputs displayed in the UXC,
and knowledge of a location of and processes for interacting
with the CDS. The knowledge of the location of and the
processes for interacting with the CDS may be deployed from
a dissociated CDS layer. The UXC may be deployed from a
dissociated UXC layer. The application logic may be
deployed from a dissociated ALEL layer. The client applica-
tion may combine these components into a deployed appli-
cation on a just-in-time basis.

The UXC, ALEL, and CDS layers may be logically and
physically dissociated such that the CDS as well as the client
applications executing on the plurality of client devices can
be independently managed and updated without affecting
each other. Since the clients and the CDS are dissociated, they
do not directly communicate with each other. Rather, the
clients and the CDS communicate with each other via the
ALEL engine and the CDS module.

The CDS module, which may be part of the ALEL engine
or the CDS, is configured to translate messages in the stan-
dardized data interchange format into a content server lan-

US 9,338,158 B2

3

guage that the CDS can understand. In response, the CDS
provides requested content and ensures that any change made
to the content by any of the plurality of client devices is
synchronized at the back end.

In the same embodiment or a different embodiment, the
ALEL engine can be the only public-facing component in an
enterprise computing environment, acting as a proxy or gate
keeper for the CDS. All other components in the enterprise
computing environment are protected behind the firewall. As
those skilled in the art will appreciate, this allows communi-
cations among the protected components to occur in a secure
manner. Those skilled in the art will also appreciate that
enterprise content may be governed by access permissions,
automated classification, retention policies, and file storage
policies. The CDS can alert the ALEL engine, via the CDS
module and/or a notifier, to tell the client devices to comply
with specific long-term retention and disposition policies
without having to communicate directly with the client
devices. This way, advantageously, the enterprise can retain
control and management of their content.

The inventive systems, methods, and techniques described
herein enable users, such as those in the enterprise, to expe-
rience functionality similar to file sharing cloud services with
the added benefit of full desktop integration and easy access
to synchronized content from mobile apps on user devices.
While the user experience does not change, all the content is
actually being stored behind the firewall with a full audit trail
ofall content access, modification, sharing, and synchroniza-
tion activity, versioning history with a listing of all versions,
complete with user notes for any modifications to each ver-
sion or sub-version, retention policies with predefined rules
about how long and where information is kept, discovery
control to easily find information when necessary, and per-
mission control on who in an organization can read, edit,
share, or even see business content.

An example method of sharing content utilizing the secure
content sharing and synchronization system may therefore
comprise, in response to receiving a valid request for content
from a client device, the ALEL engine opening a secure
connection with the client device and transmitting the request
for content through the firewall to the CDS module. The CDS
module may translate the request for content and communi-
cate same to the CDS. In response, the CDS may provide the
requested content to the ALEL engine via the CDS module.
The ALEL engine may then send the requested content to the
client device over the secure connection.

Other embodiments are also possible. For example, one
embodiment comprises a computer program product. The
computer program product may comprise at least one non-
transitory computer readable medium storing instructions
translatable by at least one processor to implement an
embodiment of a secure content sharing and synchronization
system disclosed herein. Another embodiment of the com-
puter program product may comprise at least one non-transi-
tory computer readable medium storing instructions translat-
able by at least one processor to implement an embodiment of
a secure content sharing and synchronization method dis-
closed herein.

These, and other, aspects of the disclosure will be better
appreciated and understood when considered in conjunction
with the following description and the accompanying draw-
ings. It should be understood, however, that the following
description, while indicating various embodiments of the dis-
closure and numerous specific details thereof, is given by way
of illustration and not of limitation. Many substitutions,
modifications, additions and/or rearrangements may be made
within the scope of the disclosure without departing from the

10

20

25

30

35

40

45

4

spirit thereof, and the disclosure includes all such substitu-
tions, modifications, additions and/or rearrangements.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this
specification are included to depict certain aspects of the
disclosure. It should be noted that the features illustrated in
the drawings are not necessarily drawn to scale. A more
complete understanding of the disclosure and the advantages
thereof may be acquired by referring to the following descrip-
tion, taken in conjunction with the accompanying drawings in
which like reference numbers indicate like features and
wherein:

FIG. 1 depicts a diagrammatic representation of one
embodiment of a system for providing an application with a
separation between the application and a content distribution
system,

FIG. 2 depicts a diagrammatic representation of one
embodiment of a computing environment comprising a client
computer, an on-premises server, and a remote server;

FIG. 3 depicts a diagrammatic representation of one
embodiment of a flow exemplifying requests and responses in
the computing environment of FIG. 2;

FIG. 4 illustrates logical blocks for one embodiment of an
example software system for providing network based appli-
cations;

FIG. 5 depicts a diagrammatic representation of one
embodiment of a flow exemplifying requests and responses
among dissociated UXC, ALEL, and CDS layers;

FIG. 6 depicts a diagrammatic representation of one
embodiment of an example system architecture where servers
implementing dissociated UXC, ALEL, and CDS layers can
be controlled by different entities, be at different domains and
be behind different firewalls;

FIGS. 7A and 7B depict diagrammatic representations of
example implementations of the system architecture of FIG.
6 with dissociated UXC, ALEL, and CDS and components
thereof;

FIG. 8 depicts a diagrammatic representation of one
embodiment of a secure content sharing and synchronization
system with dissociated UXC, ALEL, and CDS and compo-
nents thereof; and

FIG. 9 depicts a diagrammatic representation of an
example of content sharing and synchronization utilizing the
system of FIG. 8.

DETAILED DESCRIPTION

The invention and the various features and advantageous
details thereof are explained more fully with reference to the
non-limiting embodiments that are illustrated in the accom-
panying drawings and detailed in the following description.
Descriptions of well-known starting materials, processing
techniques, components and equipment are omitted so as not
to unnecessarily obscure the invention in detail. It should be
understood, however, that the detailed description and the
specific examples, while indicating some embodiments of the
invention, are given by way ofillustration only and not by way
of limitation. Various substitutions, modifications, additions
and/or rearrangements within the spirit and/or scope of the
underlying inventive concept will become apparent to those
skilled in the art from this disclosure. Embodiments discussed
herein can be implemented in suitable computer-executable
instructions that may reside on a computer readable medium
(e.g., a hard disk drive, flash drive or other memory), hard-
ware circuitry or the like, or any combination.

US 9,338,158 B2

5

Embodiments described herein provide systems and meth-
ods for deploying network based applications and sharing
enterprise content using these applications in a secure and
centrally controlled manner.

A network based application runs on a client device at the
front end and includes a user interface configured to allow a
user on the client device to access and interact with function-
ality and/or data provided by one or more server machines at
the back end. Such server machines often operate behind a
firewall in an enterprise computing environment. As an
example, a network based application can include the follow-
ing components:

A user experience component (UXC hereinafter), suchas a
web user interface, a local application’s graphical user
interface, or a mobile application run on the operating
system of a smartphone or other application capable
client of variable factor.

An application logic and execution layer (ALEL hereinaf-
ter), typically contained within a compiled program-
matic element on a server or Cloud infrastructure, or on
the variable factor client itself. This layer executes the
program affecting the UXC or accepting inputs from the
UXC.

A content distribution system (CDS hereinafter), such as a
file system, database, external storage device, storage
area network, graphing database, relational database,
Content Management System, Enterprise Resource
Planning system or other CDS of variable factor. Within
this disclosure, CDS can be representative of an enter-
prise content management (ECM) system.

A “cloud”, for purposes of this application, is a scalable
computer system or network that can be provisioned to create
or mimic a desired hardware and software environment.
Because many cloud environments can be provisioned to
provide a scalable environment or an environment that can be
created on demand, cloud computing is becoming increas-
ingly popular for scalable applications or temporary events. It
should be noted that embodiments described herein can be
applied to various virtual machine environments.

In some application models, the ALEL, UXC and CDS
could be controlled by a single entity that operates the server
machines behind a firewall in an enterprise computing envi-
ronment. In such an application model, the ALEL and UXC
will have knowledge of the CDS before being delivered to a
particular client. The network based application, as delivered
to the client, will be aware of the location of and how to
interact with the file system, database system or other CDS
with which it will interact to access data. In this case, the UXC
provided to the client as a webpage contains controls, which
have executable logic. Some of this logic articulates the loca-
tion of the CDS and the Application Programming Interface
(API hereinafter) necessary to affect the CDS. The applica-
tion logic, user experience elements and the network coordi-
nates of the network based application’s CDS all exist in
proximity to each other via their transport mechanism and/or
executable binary and configuration storage implementation
methods.

An advantage of this type of application model is that the
user interfaces can be constantly improved. This advantage
can be seen on free cloud services on the Internet. Applica-
tions like Google Docs, Twitter, and Facebook, which are
constantly improving cloud user interfaces to streamline the
feature usability. Such incremental changes to the applica-
tions’ user interfaces can be made because, by definition,
there is only one instance of a cloud-based application that is
used by all customers and users. This, and the fact they do not
require the customer to assign any information technology

10

15

20

25

30

35

40

45

50

55

60

65

6

(IT) staff to the maintenance of the application, make cloud-
based applications very appealing.

However, there is a cost. The content storage and user
interface components are inextricably linked and generally
need to reside on the same machine or at the same network
host name.

In a cloud-based system, the owner of the system (e.g., an
enterprise) is required to give up control of the content. Once
content is distributed or shared from an enterprise repository
via a cloud-based application, the enterprise loses control of
the content (or at least of a copy of the content which now
resides “in the cloud”). This is in contrast with content dis-
tribution via an enterprise-based application where control
remains within the confines of an enterprise computing envi-
ronment. This contrast is illustrated in Table 1.

TABLE 1
Enterprise-based Cloud-based
Application Application
Control of user interface Enterprise Vendor
Control of content Enterprise Vendor

Thus, the only way for an organization or business entity
(collectively, enterprise) to realize the benefits of a cloud-
based application (i.e. easy, ongoing user interface improve-
ments with no downtime) is to give up the control of the
content. This can be an unacceptable proposition for enter-
prises bound by enterprise requirements such as internal,
vetted policies and/or legislation governing where and how
the enterprise stores particular types of content.

As with storing data in the cloud, granting access to the
data on a secured network is also unappealing. Risk is gen-
erated with respect to a given network’s security when access
is granted. To achieve access to a secured network, valid
credentials and knowledge of the network location for a CDS
or ALEL must be obtained. An application architecture which
maintains a persistent state of geographical, logical or physi-
cal proximity with respect to the ALEL, UXC and CDS
coordinates and affectation capabilities represents a threat to
the secured network. Because of the undesirability of relin-
quishing control over data and providing access to its secured
network, an entity may not be able to use cloud based appli-
cations.

Embodiments of the inventive systems, methods, and tech-
niques described herein address the challenges in sharing and
syncing enterprise content while maintaining control over
enterprise content. In particular, embodiments described
herein enable incremental upgrades including, but not limited
to, cloud-based user interface upgrades. Further, embodi-
ments described herein enable innovative and synergistic
integration of cloud architecture for content distribution and
enterprise-class infrastructure for content security, manage-
ment, and control.

According to one embodiment described herein, network
based applications are deployed to clients with knowledge of
the CDS isolated, dissociated, or otherwise separated from
the ALEL and UXC. The ALEL and UXC are delivered to the
client without prior knowledge ofthe CDS. In some cases, the
ALEL and UXC may also be delivered independently from
and without knowledge of each other. In one embodiment, the
ALEL, UXC and CDS information only comes together
within an entity’s secured network. Embodiments described
herein provide the capacity to control the duration and
method with which the UXC, ALEL and CDS exist in mutual
geographical, logical or physical proximity.

US 9,338,158 B2

7

FIG. 1 depicts a diagrammatic representation of one
embodiment of a system for providing a network based appli-
cation with a separation between the network based applica-
tion and content distribution system. In the example of FIG. 1,
system 100 may comprise client device 110 executing client
application 120, such as a web browser or other client appli-
cation. The client application is capable of providing a run-
time environment for execution of variable application logic
within an instance of the client application. According to one
embodiment, such execution occurs in a just-in-time manner.

The client application can receive separately a UXC pay-
load 140, an ALEL payload 150, and a CDS payload 160. In
some embodiments, UXC payload 140, ALEL payload 150,
and CDS payload 160 are dissociated from each other, as
denoted in FIG. 1 by the separate boxes. These payloads are
logically dissociated and can be provided from two or more
physically dissociated server machines. This dissociation is
further explained below with reference to FIG. 6. In the
example of FIG. 1, UXC payload 140 includes information
for providing a web interface or graphical user interface (UI).
If UXC payload 140 is provided by a web server, UXC
payload 140 can include, for example, HTML 5, XML or
other markup language. ALEL payload 150 can include pro-
gram code affecting the UXC or accepting inputs from the
UXC. ALEL payload 150 can include for example, JavaS-
cript, CSS or other application information. CDS payload 160
can include information on how to interact with a CDS
including for example the location of the CDS and informa-
tion necessary to interact with the CDS. The CDS interaction
information may include, one or more of the type of API,
resource request conventions (e.g., function calling conven-
tions) including specifications for routines, data structures,
object classes, protocols used to interact with the CDS,
authentication information and the like. In one example, the
CDS interaction information may specify request message
formats (e.g., HT'TP requests) and arguments and the struc-
ture of the response messages (e.g., an Extensible Markup
Language (XML) structure, JavaScript Object Notation
(JSON) data interchange format, etc.). In one embodiment,
portions of the UXC payload in combination with one or both
of'the ALEL payload and CDS payload will make up the user
experience in the UXC application.

In some cases, the ALEL may include the knowledge nec-
essary to interact with various API’s (or other interfaces), but
not knowledge of the specific CDS with which the network
based application, after being built by the client application,
will interact. In such a case, the CDS interaction information
may simply include the identity of the API (or other inter-
face), thetype of CDS or other information that along with the
location of the CDS is sufficient for the network based appli-
cation to interact with the CDS.

Information from the dissociated UXC payload, the ALEL
payload, and the CDS payload can be combined to create an
instance of the client application that includes 1) a UXC, ii)
application logic that receives inputs from the UXC, pro-
cesses data and generates outputs displayed in the UXC, and
iii) knowledge of the location of and processes for interacting
with a specified CDS. For example, client application 120
may be a web browser. The information from dissociated
UXC payload 140, ALEL payload 150 and CDS payload 160
can be combined into network based application 130 by web
browser 120 as an instance of web browser 120 (e.g., a
webpage) running on client device 110 (and thereby creating
a deployed application using these dissociated payloads). In
one embodiment, the combined knowledge of the UXC,
ALEL and CDS may only exist on the client device while the
deployed application is running on the client device. For

10

15

20

25

30

35

40

45

50

55

60

65

8

example, as will be further described below, when the
webpage implementing network based application 130 is
closed, the UXC, ALEL and CDS may be flushed or other-
wise deleted from a memory of client device 110.

UXC payload 140, ALEL payload 150, and CDS payload
160 can be provided to client device 110 in a variety of
manners from two or more physical machines. Further, while
shown as single logical blocks in FIG. 1, each of the UXC,
ALEL and CDS payloads can be provided through a series of
requests and responses.

In operation, UXC payload 140, ALEL payload 150, and
CDS payload 160 can be provided by separate entities. FIGS.
2 and 3 discussed below, for example, describe a system and
data flow in which one entity controls its own CDS, while
another entity provides the UXC and ALEL for a network
based program. One advantage of deploying applications in
this manner is that an entity can utilize network based appli-
cations without giving up control of data or allowing access to
its secured network to the application provider.

FIG. 2 depicts a diagrammatic representation of computing
environment 200 according to one embodiment of the inven-
tive systems and methods described herein, including a client
computer 210, an on-premises server 225, and a remote server
215. Client device 210 can be a variable factor client, includ-
ing but not limited to a computer (e.g., desktop, laptop, server,
tablet, etc.), cell phone, or other computing device. Client
device 210 according to one embodiment can run a web
browser or other client application.

The term “on-premises” means that on-premises server
225 can be controlled by the same entity as client device 210,
can be in the same domain/host network as client device 210
(e.g., enterprise network 270) and can be behind the entity’s
firewall 230 with client device 210. According to one embodi-
ment, on-premises server 225 can include one or more server
machines with necessary control logic, in the form of soft-
ware, hardware, or a combination thereof, configured to pro-
vide a file system, database, access to an external storage
device, access to storage area network, graphing database,
relational database, Content Management System (CMS),
Enterprise Resource Planning system, Enterprise Content
Management (ECM), or other types of CDS. In this disclo-
sure, the term “CDS” is used to represent a variety of content
sources, including a variety of content servers. One example
of'a content source would be a content management system,
where the content managed includes documents, meta-data,
etc. . . . relating to the business of the entity owning the
content management system. According to one embodiment,
on-premises server 225 can implement a content server, such
as OpenText Content Server, manufactured by Open Text
Corporation, Waterloo, Ontario, Canada.

Remote server 215 is separate and distinct from on-pre-
mises server 225 and is typically in a different domain/host
network than on-premises server 225 (e.g., vendor network
290). Remote server 215 may be controlled by a different
entity than on-premises server 225. Remote server 215 can
include one or more web and/or application servers acting to
provide a UXC and/or ALEL payloads. In one embodiment,
remote server 215 includes a standard HT TP server that hosts
JS, CSS, and image files or other resources that constitute a
network based application. Remote server 215, for example,
can be a cloud based server that provides a network based
application over the Internet 280.

FIG. 3 depicts a diagrammatic representation of one
embodiment of flow 300 exemplifying requests and
responses in a computing environment, such as computing
environment 200 described in conjunction with FIG. 2. In this
example, the process begins with a user wishing to see, in his

US 9,338,158 B2

9

or her web browser 310 (which is a type of client application
120 as described above with reference to FIG. 1) running on
aclient device (e.g., client device 210), a screen that displays
content stored on a content server (e.g., CDS server 325). The
user starts by either clicking a link or typing a URL for the
page into his/her browser. This may be the first time the web
browser attempts to communicate with the content server.
Following this user action, an example flow can be:

1. Request for a page from the on-premises system. The web
browser running on the client device sends, on behalf of the
user, a Hypertext Transfer Protocol (HTTP) request to a con-
tent server running on an on-premises server. As illustrated in
FIG. 2, this first communication (an HTTP request from
browser 310 to CDS server 525) may occur between client
device 210 and on-premises server machine 225 in enterprise
network 270, behind firewall 230. At this point, there is no
communication occurring between client device 210 and
remote server 215 outside of enterprise network 270.

2. Response from On-Premises Server. The on-premises
server responds (via a CDS running thereon) with a small stub
of HTML that contains the most basic structure of the page
plus references to JS, CSS, and image resources that are
hosted on a remote server. The references may be URLs or
other references that provide the location of the hosted web
application. The response may, in one embodiment, also
include a CDS payload comprising an identifier of the loca-
tion of the CDS and CDS interaction information (e.g., the
identity of the API, the file system or other information so that
the browser application knows how to interact with the CDS).
3. Requests for JS, CSS, and Images. Based on the references
in the initial stub of HTML from the on-premises server, the
web browser may make several requests to a remote server
(e.g., remote server 215 implementing UXC/ALEL server
315) for JavaScript (JS), cascading style sheet (CSS), images,
and other resources (without needing to provide the location
of'the CDS). The requests from the web browser to the remote
server are considered dissociated from the request to the
on-premises server in that information about the CDS (e.g.,
the location of the CDS, the CDS interaction information,
etc.) is not communicated to the remote server.

4. Responses from the Remote Server. The remote server
responds to the web browser with the requested IS, CSS, and
image resources, in other words the UXC and ALEL pay-
loads. The UXC and ALEL payloads are considered dissoci-
ated from the CDS payloads in that they contain no informa-
tion about the CDS. These resources provided by the remote
server make up a browser-based application. At this point, the
browser-based application may be running in an instance of
the web browser. The web browser may have already received
the CDS payload from the on-premises server separate from
the UXC and ALEL payloads from the remote server. In one
embodiment, if the web browser has not received the CDS
payload from the on-premises server at this point, the web
browser may make a separate request for the CDS payload
from the on-premises server. Using information from the
CDS payload, the browser-based application can locate the
information on the location of the CDS and the CDS interac-
tion information so that the web browser knows where the
CDS is located and how to interact with it.

5. Requests for Data. The web browser now has all the com-
ponents of the browser-based application loaded, cached, and
running. It can now make a subsequent request back to the
on-premises server (or CDS) for specific data about the con-
tent the user wishes to see on the screen.

6. Data Response. The on-premises server responds to the
web browser’s requests for data in a format consumable by
the browser-based application (e.g., JSON or other suitable

10

15

20

25

30

35

40

45

50

55

60

65

10

data interchange format). According to one embodiment, the
data is a raw data format and not HTML for rendering a web
page. According to one embodiment, this data response can
include specific content.

7. Page Construction. At this point, the web browser can
completely render a page providing the user experience
(UXC) of the browser base application deployed from the
remote server and content stored on the on-premises server.
Further user interactions with the browser-based application
will either trigger the above process again, or will just make
additional requests to the on-premises server (e.g., for new,
additional, or updated content). The browser-based applica-
tion can then re-render the user experience without subse-
quent requests to the remote server (the server providing the
ALEL).

As an example use case, a user wishing to search for files in
CDS server 525 makes a request for a page (step 1). CDS
server 525 shown in FIG. 3 can be an implementation of
on-premises server 225 shown in FIG. 2. UXC/ALEL server
315 shown in FIG. 3 can be an implementation of remote
server 215 shown in FIG. 2. Web browser 310 shown in FIG.
3 may run on client device 210 shown in FIG. 2. Web browser
310 may have no information about CDS server 525 and the
user request may require the user to be authenticated before
web browser 310 can communicate with CDS server 525.
Referring to FIG. 2, such an authentication may be imple-
mented via firewall 230 or other authentication mechanism
running on enterprise network 270. After the user has been
authenticated, CDS server 525 can provide an HTML
response (also referred to as a stub HTML response) that
provides web browser 310 with information regarding the
CDS, ALEL and/or UXC servers. The HTML response may
include a small amount of information including opening and
closing tags and a reference to where application logic for the
browser-based application can be found (step 2). For
example, the HTML response can include an URL for UXC/
ALEL server 315 and/or a manifest of where JavaScript con-
taining the application logic and code of the browser-based
application can be found at UXC/ALEL server 315. The
HTML response may, in one embodiment, also include a CDS
payload which may include pointers to where the content
resides (e.g., the location of specific pieces of content or the
location of the file system, relational database or other system
storing the content) and information necessary to interact
with the CDS. For example, the HTML response may provide
the URL for a network file server and identify the CDS as a
NFS system. At this point, web browser 310, in some embodi-
ments, may partially render a webpage on client device 210
based on the HTML response from CDS server 525.

In some embodiments, an HTML response from on-pre-
mises server 325 includes the following sample code seg-
ment:

<{DOCTYPE htm!l PUBLIC “-/W3C/DTD XHTML 1.0
Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<htm!>
<head>

<meta http-equiv="X-UA-Compatible” content="IE=edge” >

<meta charset="UTF-8” />

<meta name="viewport” content="width=device-width,
minimum-scale=1.0, maximum-scale=1.0" />

<title>Dispatch Web Ul</title>

<link type="“text/css” rel="stylesheet” href="https://intranet-
test.company.com/dispatch_webui/css/dispatch.css™ />

<link rel="shortcut icon” type="image/ico” href="https://intranet-
test.company.com/dispatch_webui/img/favicon.ico™>

<script>

US 9,338,158 B2

11

-continued

info = {
repo: ‘https:\ /\ /intranet-test.company.com\ /
dispatch_webui’, cstoken:
‘4Y+d839alYhjogRyjHIMVZ5EqrK 1tE9kPoMtiyKIUINUmwg-
YUDdVerJeeN7F0z3ySTNXTADIRDmLym72q0CKPw==",

userID: 42769556,
userName: ‘userl’,
userPrefUILang: ‘en-US’,

userRootFolderID: 58194567,

userRootFolderName: ‘Dispatch[1]°,

contentServerURL: “https:\ /\ /intranet-test.company.com\ /
intranetVlivelink.exe’,

shortTimeFormat: ‘%l:%M %p’,

shortDateFormat: ‘%m\V/%d\V%Y’,

longTimeFormat: ‘%1:%M %p°,

longDateFormat: ‘%mV%dV%Y”,

sessionExpiredMessage: ‘User session has expired. Please

re-authenticate.’, userPrefDictionary: { }

10

15

¥
</script>
<script sre="https://intranet-
test.company.com/dispatch__ webui/js/dispatch.js”></script>
</head>
<body>
</body>
</html>

20

The following provides a brief explanation of portions of 23
the example HTML response given above:

12

can include user experience data for the look and feel of the
browser-based application. The ALEL payload can include
instructions (e.g., JavaScript or other instructions) for locat-
ing the identifier for the location of CDS at the client and the
CDS interaction information. Web browser 310 can combine
information from the UXC payload, the ALEL payload, and
the CDS payload and run the browser-based application—in
this case, a search application executing in an instance of the
browser. The search application after instantiation can locate
the CDS information and determine the location of CDS
server 525 and how to interact with the CDS server 525.

The search application can make a request for an initial set
of'information according to the logic of the search application
(step 5) and CDS server 525 can return the requested data
(step 6). For example, the initial data may include a folder
listing so that the user can select under which folders in CDS
server 525 to conduct a search. Web browser 310 can then
construct a webpage having the UXC provided by the search
application and display the content provided by CDS server
525.

As the user interacts with the webpage (e.g., by searching
for documents in folders in the folder list), web browser 310
can make additional requests to CDS server 525 using the
appropriate APl and display the results via the webpage
implementing the search application (i.e., the deployed
browser-based application) without having to make subse-
quent requests to UXC/ALEL server 315.

¢ <link type=“text/css” rel="stylesheet” href="https://intranet-
test.company.convdispatch_ webui/css/dispatch.css™ />

- Instructs the web browser of the address of the CSS for the UXC/ALEL.

¢ <link rel="shortcut icon” type="image/ico” href="https://intranet-
test.company.com/dispatch__webui/img/favicon.ico”>
<script
info = {

- Instructs the web browser of the address of the icon to use in the address

bar in the web browser. This is a UXC/ALEL URL.
¢ repo: ‘https:VVintranet-test.company.comVdispatch_ webui’,
- Provides the address of the UXC/ALEL server
¢ cstoken: ‘4Y+d839alYhjogRyjHIMVZSEqrK ItE9kPoMtiyKIUINUmwg
YUDdVerJeeN7F0z3ySTNXTADIRDmLym72q0CKPw==",

- Provides authentication token for web browser to make requests to the

CDS
¢ userID: 42769556,
userName: ‘userl’,
userPrefUILang: ‘en-US’,
userRootFolderID: 58194567,
userRootFolderName: ‘Dispatch[1]’,

contentServerURL: ‘https:\ A /intranet-test.company.com\ /intranet\ /livelink.exe’,
- Provides pieces of information for the web browser to make requests to

the CDS, including location.
¢ shortTimeFormat: “%l:%M %p’,
shortDateFormat: ‘%m\/%d\/%Y”,
longTimeFormat: ‘%l:%M %p’,
longDateFormat: ‘%mV%dV%Y”,
sessionExpiredMessage: ‘User session has expired. Please re-authenticate.’,
userPrefDictionary: { }

- Represents user and server settings on the CDS that can be used by the

UXC/ALEL for personalizing and localizing the user interface.
¢ script sre="https://intranet-
test.company.comv/dispatch_ webui/js/dispatch. js”></script>

- Provides the URL for the ALEL, in this example, the .js file that contains

the application logic and code of the browser-based application.

Web browser 310 will then send a dissociated request or 60
requests to UXC/ALEL server 315 for the components of the
browser-based application (step 3) without providing knowl-
edge of the location of the content to UXC/ALEL server 315.
These requests may include, for example, requests for Java-
Script files and CSS pages. UXC/ALEL server 315 responds
with the requested browser-based application components
via the UXC and ALEL payloads (step 4). The UXC payload

65

In the above example, the search application does not need
to interact with an application server for further processing.
According to another embodiment, however, a deployed
application may interact with remote server 215 to provide
further processing. For example, a statistical analysis appli-
cation may pass data to remote server 215 to allow remote
server 215 to perform more resource intensive processing.
The deployed application does not have to provide informa-

US 9,338,158 B2

13

tion to remote server 215 regarding the location of the content
on which operations are being performed. Thus, while some
discrete data may be passed for processing to remote server
215, remote server 215 does not have knowledge of the loca-
tion of or how to interact with on-premises server 225.

In the previous example, the stub HTML response includes
a CDS payload comprising an identification of the location of
the CDS or other location of the content and CDS interaction
information. In an alternative embodiment, the stub HTML
response does not include the CDS interaction information.
Instead, an on-premises server may return the CDS interac-
tion information in response to a subsequent request from the
browser (e.g., after the deployed program has been instanti-
ated by the browser using information from the UXC/ALEL
payloads). In yet another embodiment, the small HTML
response does not include the identifier of the location of the
content or CDS interaction information. Instead, the web
browser can request the location of the content or CDS inter-
action information from the on-premises server after the
browser-based application has been instantiated. In still
another embodiment, the browser-based application may
allow the user to specify the location of the CDS, entera URL
for an on-premises server or take another action that results in
the browser making a request to a location. The on-premises
server, in response to the request can return information
regarding the location of the CDS and CDS interaction infor-
mation. Those skilled in the art will appreciate that these are
non-limiting examples and that other implementations may
also be possible. For example, a network based application
deployed on a client device via dissociated UXC, ALEL, and
CDS payloads may operate to communicate with a CDS
directly (examples of which are described with reference to
FIGS. 3-6) or indirectly (examples of which are described
with reference to FIGS. 7A-9).

According to one embodiment, the information from the
UXC, ALEL and CDS payloads can be flushed or otherwise
deleted from the client device at the occurrence of certain
events. For example, the UXC, ALEL and CDS information
can be deleted when the corresponding instance of the
deployed application is terminated. According to another
embodiment, the deployed application may remain persistent
on the client device once deployed.

While remote server 215 is described above as providing a
browser-based application, remote server 215 may provide
other forms of application logic. In some embodiments, the
application logic executes just-in-time in an application on a
client device. The application logic may execute in applica-
tions other than web browsers as needed or desired.

In the foregoing examples, one entity (which may be
referred to as the enterprise entity) can own and operate
remote server 315 and need not have any knowledge of on-
premises server 325 and the ALEL need not contain a refer-
ence to the CDS. Specifically, the UXC payload includes
information for providing a web interface or graphical user
interface (UI) and the ALEL payload can include program
code such as JavaScript, CSS or other application information
for affecting the UXC or accepting inputs from the Ul. Thus,
another entity (different than the enterprise entity) can pro-
vide the deployed application while the enterprise entity
retains full control of enterprise content.

One advantage of embodiments described herein is that the
user interface and application and execution logic can be
updated and made available quickly to users (e.g., content
consumers). As soon as updated UXC or ALEL is available,
the next user making a request for the browser-based appli-
cation from remote server 315 can receive the updated version
of the browser-based application. For example, referring to

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 3, the ALEL only needs to be updated at UXC/ALEL
server 315 and provided when requested. A persistent client
application does not have to be reinstalled at each client
device. Advantageously, this can be a significant savings in
time and cost for the enterprise.

FIG. 4 illustrates logical blocks for one embodiment of
system 400 for providing network based applications. In this
example, client application 410 sends request 10 for a page to
CDS server 425 (e.g., a content management system). CDS
425 can include dispatch module 435 that, in response to the
request, interacts with dispatch application 430. Dispatch
application may determine CDS payload 25 to return to client
application 410 based, for example, on page request 10. In
one embodiment, CDS payload 25 can include a reference to
the location of CDS server 425 and information necessary to
interact with CDS 425. In one embodiment, in response to
page request 10, CDS server 425 returns CDS payload 25 and
reference 15 which causes client application 410 to send a
request to UXC/ALEL server 415 and receive, in response,
UXC and ALEL payloads 20. Those skilled in the art will
appreciate that this is a non-limiting example of a client-
server transaction implementing the system architecture
described above that enables dissociated UXC, ALEL, and
CDS payloads. As illustrated above with reference to FIG. 3,
in another embodiment, in a response to a request from a
client application, the CDS server may return a stub HTML
response that includes a small amount of information includ-
ing opening and closing tags and a reference to where appli-
cation logic and code for a requested browser-based applica-
tion may be found at the UXC/ALEL server. Client
application 410 can execute instructions in the ALEL payload
to provide network based application 30 that, through the
information in CDS payload 25, knows where the CDS is
located and, in one embodiment, how to interact with the
CDS. In one embodiment, CDS payload 25 does not contain
any specific piece of content.

It should be noted that the logical blocks of FIG. 4 are
provided by way of illustration and the processing associated
with each logical block of FIG. 4 can be performed on a single
computer or be distributed across multiple computers. Fur-
thermore, the processing can be implemented as a single
program or module or be implemented as multiple programs
ormodules or according to any suitable software architecture,
another example of which is illustrated in FIG. 5.

FIG. 5 depicts a diagrammatic representation of one
embodiment of flow 500 exemplifying requests and
responses in a computing environment in which there is fur-
ther separation between the UXC, ALEL and CDS. In this
embodiment, an on-premises server (e.g., CDS server 525)
can provide the CDS component for a network based appli-
cation, a first remote server (e.g., UXC server 515) can pro-
vide the UXC, while a second remote server (e.g., ALEL
server 520) can provide the ALEL component. These remote
servers may be at different domains and be controlled by
different entities.

For example, UXC server 515 and ALEL server 520 can be
external to the network environment where the client device
resides and/or where CDS server 525 resides. An example
flow can be:

1. Request for CDS page. A web browser sends an HTTP
request to an on-premises server.

2. Response from CDS. The on-premises server responds
with a small stub of HTML that contains the most basic
structure of the page plus references to a first remote server.
The reference may be URLs or other references that provide
the location of the UXC for the hosted web service. The

US 9,338,158 B2

15

response may also include, via a CDS payload, pointers to
where the content resides and CDS interaction information.

3.Request for UXC. Based on the references in the initial stub
of HTML from the on-premises server, the web browser may
make several requests to the first remote server for UXC data.
4. Response with UXC Payload. The first remote server
responds with UXC data, such as HTMLS5, XML or other data
via a UXC payload. According to one embodiment, if the
short HTML response from the on-premises server did not
include a reference to a second remote server, the first remote
server can respond with a reference to a location of the
browser-based application components.

5.Requests for JS, CSS, and Images. Based on the references
in the initial stub of HTML from the on-premises server or
from the payload provided by the first remote server, the web
browser may make several requests to the second remote
server for JavaScript (JS), cascading stylesheet (CSS), image
resources, or other resources.

6. Responses from the ALEL Server. The second remote
server responds to the web browser with JS, CSS, image
resources or other resources via ALEL payloads. These
resources make up the browser-based application. At this
point, the browser-based application is running in an instance
of'the web browser (web browser 510 in the example of FIG.
5).

7. Requests for Data. The web browser now has all the com-
ponents of the browser-based application loaded, cached, and
running. It can now make a subsequent request back to the
on-premises server for specific data about the content the user
wishes to see on the screen.

8. Data Response. The on-premises server responds to the
web browser’s requests for data in a format easily consum-
able by the browser-based application (e.g., JSON or other
format).

9. Page Construction. At this point, the web browser has
enough information to build the user experience of the page
for the user. Specifically, the web browser has the specific
content that the user wishes to see on the screen from the
on-premises server and the web browser also has the browser-
based application (with the user experience component and
the application logic and execution layer information) from
the remote servers (UXC server 515 and ALEL server 520 in
the example of FIG. 5).

As discussed above, the web browser can now fully render
the web page and the deployed program (running as an
instance of the web browser on the client device) can interact
with the CDS at the back end on the server side. An example
of this interaction will now be described.

FIG. 6 depicts a diagrammatic representation of one
embodiment of system 600 comprising at least a client
device, a UXC server, an ALEL server, and a content server.
The servers implementing dissociated UXC, ALEL, and CDS
layers can be controlled by different entities, be at different
domains and behind different firewalls.

In this example, client device 610 can include a client
application, such as a web browser or other client application
capable of providing a run-time environment for execution of
variable application logic within an instance of the client
application. According to one embodiment execution occurs
in a just-in-time manner.

According to one embodiment, the client application 620
may request a UXC from UXC server 670 by sending request
622 (e.g., in the form of a request for access at a particular
URL) to UXC server 670. One example of UXC server 670
may be a web server hosting an e-commerce site. For
example, client application 620 may request a page from the
e-commerce site hosted on UXC server 670. In response,

25

30

40

45

60

16

UXC server 670 may return UXC payload 640 that includes
UXC information (such as HTML and/or XML) and an
ALEL manifest. In one embodiment, the ALEL manifest can
provide the location of ALEL server 680 (e.g., as URL or
other identification of location). In one embodiment, UXC
payload 640 may also include authorization information,
such as an authentication token that can allow client applica-
tion 620 to send requests to ALEL server 680. In one embodi-
ment, the authentication token that is part of UXC payload
640 may be created using user credential submitted via client
application 620 to UXC server 670 and may identify the user
and/or a particular session with client application 620. Using
information from request 622, UXC server 670 can create an
authentication token to be used by client application 620.
Such an authentication token may be two-way encrypted and
inserted into a server response. Those skilled in the art will
appreciate that this authentication process may be imple-
mented in various ways.

Using the ALEL manifest in UXC payload 640, client
application 620 can then send request 624 to request applica-
tion and execution logic from ALEL server 680. In response,
ALEL server 680 can provide ALEL payload 650 containing
the ALEL (e.g., a JAVA API and or JAVA application) and a
CDS manifest. The CDS manifest can contain a reference to
the location of content. In one embodiment, ALEL payload
650 may also include authorization information, such as an
authentication token for client application 620 to send
requests to CDS server 690. Using information from request
624, ALEL server 680 can create an authentication token to be
used to access content at CDS server 690. The authentication
token may be created using user credential submitted via
client application 620 and may identify the user and/or a
particular session. Implementations of authentication pro-
cesses are known to those skilled in the art and thus are not
further described herein. At this point, while client applica-
tion 620 may know the location of CDS server 690, client
application 620 may not have all of the information necessary
to interact with CDS server 690.

Client application 620 can then send request 626 to CDS
server 690 (which can include the authentication token to
allow interaction with CDS server 690). In turn, CDS server
690 can return CDS payload 660 to client application 620. In
this embodiment, CDS payload 660 includes information
necessary to interact with CDS server 690. In one embodi-
ment, CDS payload 660 does not contain specific content
data. In one embodiment, subsequent interactions between
the client application 620 and CDS server 690 can deliver the
CDS content shown in CDS payload 660 (e.g., CMIS API,
Proprietary Content, content from file systems/relational
databases, etc.). In an alternative embodiment, the CDS pay-
load with content can be returned in response to the initial
request from the client application containing the CDS
authentication token. In one embodiment, UXC payload 640,
ALEL payload 650, and CDS payload 660 can be combined
by client application 620 to form a single logical network
based application 630 capable of interacting with CDS server
690 and providing a user experience environment to the user
through client device 610. In one embodiment, portions of
UXC payload 640 in combination with one or both of ALEL
payload 650 and CDS payload 660 make up the user experi-
ence in the deployed application (e.g., network based appli-
cation 630) within the client application 620.

In system 600, UXC server 670, ALEL server 680, and
CDS server 690 are all logically and physically separated
devices (however, in alternative embodiment, any two of
these servers could be combined at a single physical and/or
logical device). While the UXC server knows the location of

US 9,338,158 B2

17

the ALEL server and the ALEL server knows the location of
the CDS, control of the various servers can be distributed
between different entities. Thus, for example, an e-commerce
site acting as UXC server 670 can provide a branded user
interface for an application hosted by a second entity that
operates on the content administered by another entity (e.g., a
cloud storage provider) without the e-commerce provider or
deployed application provider knowing how to access the
data at CDS server 690. This dissociation allows the UXC
server, ALEL server and CDS to be controlled, managed, and
updated independent of each other. For example, CDS server
690 can update, control, and manage its content without
affecting the e-commerce site hosted on UXC server 670
and/or ALEL server 680. Likewise, UXC server 670 can
update its user experience environment (e.g., deployed app
630) for the e-commerce site presented through client appli-
cation 620 without affecting ALEL server 680 and/or CDS
server 690. Thus, in one embodiment, when UXC server 670
is updated to update the user experience, if this update does
not affect the CDS server 690 (e.g., a change to the UXC
server 670 code will have no effect on the CDS server 690
code), then CDS server 690 does not need to be “brought
down” while UXC server 670 is brought down to be
upgraded. Furthermore, in some corporate environments, due
to internal rules/policies, even when an upgrade to UXC
server 670 does not affect the operation of CDS server 690,
both UXC server 670 and CDS server 690 will be brought
down and re-tested before taking the system live again (this
can be particularly prevalent in prior art systems where the
payloads of the UXC, ALEL and CDS are not disassociated).
This is because it is easier for policy reasons to implement a
rigid policy, rather than trying to determine on a case-by-case
basis if the change to UXC server 670 will actually affect
CDS server 690. However, in this embodiment, because of the
disassociation of the payloads and the requests for those
payloads from the client application 620, the owner of the
back end system can be more comfortable that upgrades to
UXC server 670 will not require “taking down” CDS server
690.

System 600 of FIG. 6 illustrates by example one embodi-
ment of a dissociated computing environment in which the
UXC, ALEL, and CDS layers can be physically and logically
dissociated. Those skilled in the art will appreciate that many
implementations are also possible. FIGS. 7A and 7B depict
diagrammatic representations of example implementations
of a dissociated computing environment with dissociated
UXC, ALEL, and CDS layers and components thereof. In the
examples of FIGS. 7A and 7B, a network based application
running on a client device may directly and/or indirectly
communicate with a CDS server at the back end.

Like system 600 shown in FIG. 6, system 700 shown in
FIGS. 7A and 7B comprises a plurality of UXC servers 715
independently owned and operated by a plurality of entities.
The plurality of servers may run on a variety of platforms and
communicate with client devices 710 running on such plat-
forms to provide user experience environments via network
based applications 730 running on the client devices. As
described above, such a user experience environment may be
deployed as a web user interface (UlI), a local application’s
graphical user interface, a mobile application run on the oper-
ating system of a smartphone, or the like. For the sake of
illustration, such a deployed application may be referred to
herein as a UXC app. As illustrated in FIGS. 7A and 7B, UXC
apps may be hosted on UXC servers 715 operating on various
platforms. For example, Platform 1 referred to in FIG. 7A
may be a mobile operating system such as iOS which is
developed and distributed by Apple Inc. UXC app 1 in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

18

7A may be built at server 715 and deployed to client devices
running 108S. Different UXC apps can be built by different
entities and deployed to different client devices running dif-
ferent platforms. As described above, the physical and logical
dissociation of the UXC, ALEL, and/or CDS allow the UXC
apps to be independently developed, deployed and updated
without affecting the ALEL and CDS servers. Each UXC app
may contain a UXC for a particular application hosted on the
ALEL server and instructions to get the application from the
ALEL server. Examples of UXC apps may include, but are
not limited to, a search application for searching a CDS, a
browsing application for exploring the CDS, etc.

System 700 may further comprise ALEL server 770 and
CDS server 790 (or CDS 790). ALEL server 770 may com-
prise ALEL engine 780. ALEL server 770 and CDS 790 may
be owned by the same entity or they may be owned by differ-
ent entities. As illustrated in FIG. 7A, one embodiment of
CDS 790 may comprise CDS module 785 configured to com-
municate with ALEL engine 780 on ALEL server 770. As
illustrated in FIG. 7B, one embodiment of ALEL engine 780
may incorporate CDS module 785 and be configured to com-
municate with CDS 790. In one embodiment, the CDS mod-
ule may be referred to as a content server module.

CDS 790 may operate as a central repository for content
owned and managed by an entity. In system 700, the UXC
(e.g., the look and feel of user experience using an embodi-
ment of system 700), the ALEL (e.g., the functionality of
system 700), and the CDS (e.g., the content stored on and
shared via system 700) are dissociated from one another. This
allows the UXC, ALEL, and CDS to be implemented in or
hosted on different, physically dissociated machines. Thus,
client devices can now operate in the cloud or other dissoci-
ated computing environments, while the entity can upgrade,
manage, or otherwise control CDS 790 without having to shut
down or otherwise affecting any of the applications deployed
on the client devices and/or the ALEL server. Likewise, the
UXC (which provides the look and feel of system 700), the
ALEL (which provides the functionality of system 700), or
both can be updated or otherwise controlled without affecting
the CDS (which provides the content of system 700). As will
be further described below with reference to FIG. 8, this
dissociated computing environment further allows content
from the central repository to be shared remotely and securely
as well as synchronized in a timely and efficient manner.
Since the entity retains control of content of CDS 790, busi-
ness processes such as document retention policies can also
be readily implemented in a timely and efficient manner.

FIG. 8 depicts a diagrammatic representation of one
embodiment of a content sharing system (e.g., system 800).
System 800 may include various types of client devices (e.g.,
client devices 810, 812, 814, and 816) running on different
platforms as described above with reference to FIGS. 7A and
7B. Each client device may have an appropriate UXC app
(e.g., network based applications 830, 832, 834, and 836)
built to communicate with ALEL engine 880 running on
ALEL server 870. After a network based application is
deployed to, loaded, and running on a client device as
described above, it can send requests, directly or indirectly,
through ALEL server 870, back to an on-premises server, a
content server, or in the example of FIG. 8, CDS 890 and/or
CDS 892, for specific content for use on the client device. A
network based application may interact with a CDS indirectly
through an ALEL engine executing on an ALEL server (as
shown in FIGS. 7A-8) or directly with a CDS (as shown in
FIGS. 3-6). In one embodiment, a network based application
(e.g., network based application 832) may comprise an API
used to interact with ALEL engine 880. As described above,

US 9,338,158 B2

19
this API may be provided from a UXC/ALEL server such as
UXC/ALEL server 315 shown in FIG. 3 or separately from an
ALEL server such as ALEL server 520 as shown in FIG. 5.

In one embodiment, ALEL engine 880 can be implemented
as a public-facing Tomcat Web Application, outside of the
firewall of an enterprise computing environment that
includes, for example, CDS 890 and CDS 892 shown in FIG.
8. CDS 890 may run on one or more server machines (col-
lectively referred to as CDS 890). Likewise, CDS 892 may
run on one or more server machines (collectively referred to
as CDS 892). Such a CDS may be configured to store, control
and manage content that is owned by an enterprise. In this
disclose, the term “enterprise” is representative of any entity
such as a business, organization, company, government
agency, etc. One or more employees of the enterprise may use
various client devices, each having one or more appropriate
UXC apps, to access and interact with content contained in
the CDS. Depending upon implementation, each client
device may or may not have a local cache managed by the
CDS (via ALEL engine 880 and CDS module 885 in the
example of FIG. 8) at the back end. Such a cache may be
specific to a CDS and encoded such that only ALEL engine
880 may access on behalf of the CDS.

As an example, a user wishing to access a document stored
in CDS 890 may type in an URL and passcode via his/her
UXC app running as an instance of a client application on
client device 810. ALEL server 870 receives the user request
and allows the user to access the document at CDS 890 behind
the user’s company’s firewall and also allows the user to make
any change to the document. ALEL engine 880 can operate to
sync the change (a local version of the document may be
cached on client device 810) with the document on CDS 890
at the back end.

CDS module 885 can serve as an abstraction layer between
ALEL engine 880 and CDS 890. In one embodiment, CDS
module 885 comprises logic or code for setting up CDS 890
and controls some of the system functionality of CDS 890. A
CDS module can communicate with a content server in a
language that is understood by the content server. It can
translate a request from the ALEL engine into something the
content server can understand. For example, ALEL engine
880 may receive an HTTP/JSON API request from client
device 810 to add a document to CDS 890. HTTP/JSON
messages may be standardized and may take the form:
{type”:“request” “subtype”:<API Name>,“cstoken”:
<LLCookie>“info”:{ API Param key value pairs>}}. Other
forms may also be possible.

ALEL engine 880 may check to see if the HTTP/JSON API
request is valid (in a valid format from a valid source), opens
up a secure connection, and transmits it to CDS module 885.
CDS module 885 may map and/or translate the request to
however number of repository actions in the appropriate con-
tent server language so that CDS 890 can understand what to
do where and what that means.

CDS module 885 may get response(s) (e.g., “the document
has been successtully added to the repository,” etc.) from
CDS 890 and translate them back to the JSON language that
the requesting client (client device 810 in this example) can
understand.

Although not shown in FIG. 8, a CDS module can be a
share point and interface with multiple CDS systems. As
shown in FIGS. 7A and 7B, a CDS module can be part of the
ALEL engine or the content server. As described above, the
ALEL engine and the content server can be owned by the
same entity or different entities.

In one embodiment, CDS module 885 can be a Java appli-
cation that runs in a Java Runtime Environment known as the

10

15

20

25

30

35

40

45

50

55

60

65

20
Java Virtual Machine (JVM). Likewise, notifier 835 can runin
JVM as a messenger for CDS 890. Similarly, notifier 837 can
act as a messenger for CDS 892. In one embodiment, notifier
835 can be part of CDS 890.

In the example of FIG. 8, notifier 835 can communicate
with ALEL engine 880. In one embodiment, ALEL engine
880 may have the necessary intelligence to translate a content
server notification (as communicated by notifier 835) into an
appropriate HTTP/JSON Backchannel Notification. In this
way, in response to a change to a document at the back end,
ALEL engine 880 may communicate the change to one or
more client devices from where the document has been or is
accessed. Again, from the client perspective, the API to com-
municate with ALEL engine 880 can include an industry
standard HTTP/JSON message with the right “hook™ (e.g., an
URL to ALEL engine 880). Applications running on client
devices do not need to know the connection between ALEL
engine 880 and CDS 890. This API (which, as described
above, can be part of a network based application that is built
to run on a client device) controls how the client device talks
to the ALEL engine to access the files on the content server.
One example of the API may implement a sharable folder
linking a user on a client device to a server folder. Implemen-
tation of such an API is within the knowledge of those skilled
in the art and thus is not further described herein.

In one embodiment, the client device may have its own
notifier configured to communicate with the ALEL engine.
However, the notifier on the client device does not know how
to communicate with the content server behind the ALEL
engine. In this case, the ALEL engine may have the necessary
intelligence to translate a client operating system (OS) noti-
fication into a HTTP/JSON message and communicate same
to the CDS module. The client notification does not contain
server instructions. The CDS module may then translate the
HTTP/JSON message into a content server message that can
be understood by the content server.

In embodiments where the ALEL and CDS servers are
owned by the same entity, they can be under the control of the
entity’s administrators behind their firewall. The entity may
have no (and does not have to have) control of applications
running on the client machines. For example, a user on a client
device is using a word processing application to display and
edit a document from CDS 890. When the entity needs to
update CDS 890, there is no need to reinstall the word pro-
cessing application, just change the word processing applica-
tion’s API to CDS 890.

Behind the scene, ALEL engine 880 manages, in conjunc-
tion with CDS modules 885, 887, interactions between client
devices 810, 812, 814, and 816 and CDS servers 890, 892. As
described above, because UXC, ALEL, and CDS payloads
can be separately deployed to client devices, client devices
810, 812, 814, and 816 do not need to know how to commu-
nicate with CDS servers 890, 892, and vice versa.

To this end, a CDS module can act as a translator for a
content server and communicate with an ALEL engine to
implement business processes applied to the content server.
For example, suppose the entity has a record retention policy
to delete a certain file with a 5-year lifespan. The CDS module
can interpret a content server message that this fileneeds to be
deleted from any client device that has it and sends a corre-
sponding HTTP/JSON message to the ALEL engine. The
ALEL engine, in turn, communicates in HTTP/JSON with
client device(s) to effect the deletion of the file from the client
device(s). Since a client device must have the appropriate
JSON/API (which includes an URL of the ALEL engine) to
communicate with the ALEL engine, the ALEL engine can be
considered as a proxy or gate keeper for the content server.

US 9,338,158 B2

21

That is, if a client is not using the JSON/API, it cannot get
through the ALEL engine and therefore cannot get through to
the content server. Note that there can be multiple versions of
the API available for a UXC app to communicate with a
particular ALEL engine to get to a particular content server,
s0 long as the UXC app is built for the correct JSON/API for
the desired ALEL engine.

With the ALEL engine acting as a proxy or gate keeper for
the content server, an enterprise can retain control of their
content retention policy, record management, and other busi-
ness processes such as workflow, archiving, moderation,
document review, etc. The CDS module can alert the ALEL
engine to tell the client devices to act accordingly. For
example, an enterprise may not want a document DOC sitting
out there on client device(s) when it needs to be deleted or
archived. The content server may send a notification (e.g., via
notifier 835) “delete DOC” to the ALEL engine and the ALEL
engine may notify client devices to take appropriate action.
Whether or not the document gets deleted right away may
vary from implementation to implementation. For example, if
the document is downloaded to a mobile device and stored
locally in a file cache on the mobile device, the document may
get deleted next time when the mobile or client cache is
refreshed or otherwise updated by the ALEL engine. The
cache is managed by the ALEL engine and is specific to the
ALEL engine in that the path to the document in the file
system on the mobile device may not be accessible by other
applications running on the mobile device. Further, the cache
may be encrypted with a passcode such that the OS on the
mobile device can access the caches but other applications
running on the mobile device cannot. If a user of the mobile
device is no longer associated with the entity which owns the
document, the ALEL engine can lock the file/folder. Depend-
ing upon implementation, the actual document may not need
to be downloaded from the central repository. Rather, the
ALEL-specific file cache on the mobile device may store a
reference to the document. So long as a client downloads afile
through the ALEL-specific AP, thefile (in the ALEL -specific
file cache) is managed by the ALEL engine (on behalf of the
content server) and not by the local application running on the
mobile device.

In one embodiment, there is no need to drop a token to track
afile on a client device. From the perspective of the user, he or
she does not have to do anything. The appropriate document
gets deleted automatically per the user’s company’s policy.
From the records management (RM) perspective, this
enforcement method is much more efficient, effective and
convenience for the user. The client cache can be managed
remotely per RM rules and policies and the enterprise content
is always available securely, even across continents. For
example, different policies may apply to a document depend-
ing upon where the document is viewed on a client device.
The mobile device may communicate location information to
the ALEL engine (e.g., in the U.S. or Canada) and apply RM
policy with respect to each country. This feature can be
viewed as an extension of a repository rule, allowing consis-
tent management of enterprise content.

Unlike a mobile client, there is no content cache for a
browser client because it is a web page. In this case, the ALEL
engine may synchronize each file accessed by the browser
client to a folder. For a desktop client, the ALEL engine may
provide a file to a file system on the desktop client and place
it in a particular location of the desktop client file system.
When the ALEL engine wants to act on the file, it goes to that
particular location to act on it. As a gate keeper, the ALEL
engine controls access to the file and, in many cases, can get

20

25

40

45

22

through a local file system on a client to manage and/or
control the local version of the file.

In one embodiment, the content server may have a token
module that will track each token on a client device indicating
that a certain version of a particular document is on a certain
device a certain date and/or time. This allows the content
server to implement document versioning control. So, if a
particular version of a document needs to be deleted, the
content server will know which client devices to notify for
deletion.

The content server knows from audit trail, activity trail,
repository, etc. if a file is sent to a device. In one embodiment,
a UXC app running on a client device may have a database
storing information such as document ID, repository of
records, modify date, permission, file hash (to do repair), etc.
When content is modified on one of the client devices, the
modified data is stored in the content server and all interested
client devices are notified of the change. Clients can then
download the updated content from the content server. All
changes to content on any client trigger notifications to all
other clients of the modification so that they either perform
the same operation locally or download the updated content
from the content server. A “Sharing” feature of the UXC app
may allow users to give access to specific folders to selected
users, ensuring that all interested parties are notified of any
content changes.

As described above, the ALEL engine can be implemented
as the only public-facing proxy outside of the firewall of an
enterprise computing environment. In this way, the ALEL
engine can act as a secure point in which everything behind
the firewall is protected. From the security perspective, the
ALEL engine can be an important component of a content
sharing and synchronizing system. Additionally, the ALEL
engine can offload some of the functions normally provided
by the server(s) in the enterprise computing environment. For
example, the ALEL engine may also validate (authenticate) a
request from a client machine and create a secure connection
between the client machine and itself. One example secure
connection may be a HT'TPS connection. Other types of
secure connections may also be possible. For example, the
ALEL engine may utilize 256-bit Secure Sockets Layer
(SSL) encrypted communications when communicating with
web browsers to ensure that no traffic in transit can be seen, or
“sniffed”, by network traffic monitoring tools. As with all
web browser interface experiences; local caching, history and
file storage is governed by the settings within the browser
being used. Companies with browser-based security concerns
may mandate specific browser types and versions, and may
have centralized system management tools in place to control
local browser settings. As those skilled in the art will appre-
ciate, since all other components in the enterprise computing
environment are protected behind the firewall, communica-
tions among the protected components can occur in a secure
manner. Content stored in a central repository is governed by
access permissions, automated classification, retention poli-
cies, and file storage policies applicable to the enterprise
computing environment. All content, including versions,
metadata, audit history, and so on can be saved within specific
long-term retention and disposition policies.

Embodiments described above allow companies and the
like to quickly set up a private solution for sharing and sync-
ing information across multiple devices, combining con-
sumer-level usability with enterprise-level reliability and
security. For enterprise users, the experience and functional-
ity is similar to file sharing cloud services with full desktop
integration and easy access to synchronized content from
mobile apps on user devices. While the user experience does

US 9,338,158 B2

23

not change, all the content is actually being stored behind the
company firewall with a full audit trail of all content access,
modification, sharing, and synchronization activity; version-
ing history with a listing of all versions, complete with user
notes for any modifications to each version or sub-version;
retention policies with predefined rules about how long and
where information is kept; discovery control to easily find
information when necessary; and permission control on who
in an organization can read, edit, share, or even see business
content. Embodiments can thus provide:

transparent integration into enterprise user desktops,

including sharing with internal and external users;
intuitive user experience across the Web, desktop comput-
ers and mobile devices;

the ability to synchronize enterprise content across any

number of computers, tablets, and other devices, ensur-
ing that enterprise users always have the latest copy of
documents;

a simple Web interface for managing file information, set-

ting permissions or sharing files;

aflexible deployment model that allows companies and the

like to manage their content sharing and syncing system
entirely on-premises or choose a hybrid model that
allows companies to maintain control of the information
atthe CDS layer but offload the effort of maintaining the
content sharing and syncing service to the ALEL layer.

To illustrate these features, below provides an example day
in the life of an enterprise knowledge worker “John” utilizing
one embodiment of system 800. Referring to FIG. 9, at 9 AM,
John may be at a standalone work station at his company
creating a document and saving the document using a word
processing application. When the document is saved, the
word processing application automatically sends it to an
enterprise content management (ECM) server. John’s work
station may or may not cache the document locally in a folder.
As described above, there is no difference in the user experi-
ence environment. However, behind the scene the client
application (the word processing application) is dissociated
from the ECM. The ECM and the client application do not
know how to communicate directly with each other. Rather,
the client application communicates, via an API, with a
secure content sharing and syncing engine (content engine)
which has or talks to a content module which, in turn, com-
municates with the ECM in an ECM-specific language.

At 11 AM, John attends a collaboration meeting reviewing
the document that he had created earlier on a laptop with his
colleagues. The client application which was used to create
the document can be used to retrieve from the ECM and
present the document on the laptop and/or project it on a
screen. The client application can relate any change made to
the document via the laptop to the ECM as described above.
Again, John’s laptop may or may not cache the document
locally in a content folder.

At 2 PM, while at lunch John shows another colleague the
document that he had been working on at 9 AM and collabo-
rated with other colleagues at 11 AM by bringing up the
document or a rendition of the document (e.g., a copy or a
HTML view of the document) on John’s mobile device. Any
update to the document made via the mobile device is corre-
spondingly made at the backend (at the ECM) and viewable
by other devices back at the office as well. John’s mobile
device may or may not cache the document locally in a
content folder.

At 6 PM, John is at home at his own computer and wants to
add a paragraph to the document that he has been working on
all day. Using a Web browser, John can dynamically and
conveniently download a Web interface of the ECM via dis-

10

15

20

25

30

35

40

45

50

55

60

65

24

sociated UXC, ALEL, and CDS payloads as described above
and download the document manually, interactively make the
change to the document, and upload the document again
interactively. The ECM keeps the version history of the docu-
ment.

In this example, there are three applications at work here.
The computers that John used at two different locations at 9
AM and 11 AM are work computers. The first application in
this case is a background service that performs synchroniza-
tion and therefore has very minimal application logic. On the
mobile devices, the second application is a content sharing
and synchronization system for making a request to the ECM
to get metadata about the document and optionally download
the document as well. On the home computer, the third appli-
cation is a browser-based application built in the HTML and
Java script that runs on a browser that has all kind of logic for
building the Web interface and presenting the Web interface
to the user to then make a request back to the server. These are
three different applications in a system architecture disclosed
herein that can all be built, distributed, and updated indepen-
dently of the ECM system and can be hosted outside of the
ECM system as well.

So, the mobile device and the home computer can have
network based applications conveniently deployed when
needed. As described above, the UXC, ALEL, and CDS lay-
ers can be dissociated logically and physically. In some
embodiments, the UXC, ALEL, and CDS layers can be dis-
sociated logically but not necessarily physically. For
example, in one embodiment, the content engine may reside
on an application server and serve as an interface between the
Ul and the ECM for all content and user devices. As another
example, in one embodiment, the content engine may reside
on client devices to interface with the Ul but may have
nothing to do with a client application used to create a docu-
ment on the client device. The logical dissociation and, in
some embodiments, the physical dissociation among the
UXC, ALEL, and CDS layers allow enterprise users to access
enterprise content from virtually anywhere, via any device, at
any time and make it easy for them to securely share the
content with other people, while allowing the owner of the
content to retain control and management of the content.
Further, the logical dissociation among the UXC, ALEL, and
CDS layers allows entities to update the user experience
environments and/or client applications at the client devices
without affecting the ECM, and vice versa.

Although the invention has been described with respect to
specific embodiments thereof, these embodiments are merely
illustrative, and not restrictive of the invention. The descrip-
tion herein of illustrated embodiments of the invention,
including the description in the Abstract and Summary, is not
intended to be exhaustive or to limit the invention to the
precise forms disclosed herein (and in particular, the inclu-
sion of any particular embodiment, feature or function within
the Abstract or Summary is not intended to limit the scope of
the invention to such embodiment, feature or function).
Rather, the description is intended to describe illustrative
embodiments, features and functions in order to provide a
person of ordinary skill in the art context to understand the
invention without limiting the invention to any particularly
described embodiment, feature or function, including any
such embodiment feature or function described in the
Abstract or Summary. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes only, various equivalent modifications are pos-
sible within the spirit and scope of the invention, as those
skilled in the relevant art will recognize and appreciate. As
indicated, these modifications may be made to the invention

US 9,338,158 B2

25

in light of the foregoing description of illustrated embodi-
ments of the invention and are to be included within the spirit
and scope of the invention. Thus, while the invention has been
described herein with reference to particular embodiments
thereof, a latitude of modification, various changes and sub-
stitutions are intended in the foregoing disclosures, and it will
be appreciated that in some instances some features of
embodiments of the invention will be employed without a
corresponding use of other features without departing from
the scope and spirit of the invention as set forth. Therefore,
many modifications may be made to adapt a particular situa-
tion or material to the essential scope and spirit of the inven-
tion.

Reference throughout this specification to “one embodi-
ment”, “an embodiment”, or “a specific embodiment” or
similar terminology means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment and may not
necessarily be present in all embodiments. Thus, respective
appearances of the phrases “in one embodiment”, “in an
embodiment”, or “in a specific embodiment” or similar ter-
minology in various places throughout this specification are
not necessarily referring to the same embodiment. Further-
more, the particular features, structures, or characteristics of
any particular embodiment may be combined in any suitable
manner with one or more other embodiments. It is to be
understood that other variations and modifications of the
embodiments described and illustrated herein are possible in
light of the teachings herein and are to be considered as part
of the spirit and scope of the invention.

In the description herein, numerous specific details are
provided, such as examples of components and/or methods,
to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize, how-
ever, that an embodiment may be able to be practiced without
one or more of the specific details, or with other apparatus,
systems, assemblies, methods, components, materials, parts,
and/or the like.

In other instances, well-known structures, components,
systems, materials, or operations are not specifically shown or
described in detail to avoid obscuring aspects of embodi-
ments of the invention. While the invention may be illustrated
by using a particular embodiment, this is not and does not
limit the invention to any particular embodiment and a person
of ordinary skill in the art will recognize that additional
embodiments are readily understandable and are a part of this
invention.

Embodiments discussed herein can be implemented in a
computer communicatively coupled to a network (for
example, the Internet), another computer, or in a standalone
computer. As is known to those skilled in the art, a suitable
computer can include a central processing unit (“CPU”), at
least one read-only memory (“ROM”), at least one random
access memory (“RAM?”), at least one hard drive (“HD”), and
one or more input/output (“I/O”) device(s). The I/O devices
can include a keyboard, monitor, printer, electronic pointing
device (for example, mouse, trackball, stylus, touch pad,
etc.), or the like.

ROM, RAM, and HD are computer memories for storing
computer-executable instructions executable by the CPU or
capable of being compiled or interpreted to be executable by
the CPU. Suitable computer-executable instructions may
reside on a computer readable medium (e.g., ROM, RAM,
and/or HD), hardware circuitry or the like, or any combina-
tion thereof. Within this disclosure, the term “computer read-
able medium” is not limited to ROM, RAM, and HD and can
include any type of data storage medium that can be read by

10

15

20

25

30

35

40

45

50

55

60

65

26

a processor. For example, a computer-readable medium may
refer to a data cartridge, a data backup magnetic tape, a floppy
diskette, a flash memory drive, an optical data storage drive,
a CD-ROM, ROM, RAM, HD, or the like. The processes
described herein may be implemented in suitable computer-
executable instructions that may reside on a computer read-
able medium (for example, a disk, CD-ROM, a memory, etc.).
Alternatively, the computer-executable instructions may be
stored as software code components on a direct access storage
device array, magnetic tape, floppy diskette, optical storage
device, or other appropriate computer-readable medium or
storage device.

Any suitable programming language can be used to imple-
ment the routines, methods or programs of embodiments of
the invention described herein, including C, C++, Java, Java-
Script, HTML, or any other programming or scripting code,
etc. Other software/hardware/network architectures may be
used. For example, the functions of the disclosed embodi-
ments may be implemented on one computer or shared/dis-
tributed among two or more computers in or across a network.
Communications between computers implementing embodi-
ments can be accomplished using any electronic, optical,
radio frequency signals, or other suitable methods and tools
of communication in compliance with known network proto-
cols.

Different programming techniques can be employed such
as procedural or object oriented. Any particular routine can
execute on a single computer processing device or multiple
computer processing devices, a single computer processor or
multiple computer processors. Data may be stored in a single
storage medium or distributed through multiple storage medi-
ums, and may reside in a single database or multiple data-
bases (or other data storage techniques). Although the steps,
operations, or computations may be presented in a specific
order, this order may be changed in different embodiments. In
some embodiments, to the extent multiple steps are shown as
sequential in this specification, some combination of such
steps in alternative embodiments may be performed at the
same time. The sequence of operations described herein can
be interrupted, suspended, or otherwise controlled by another
process, such as an operating system, kernel, etc. The routines
can operate in an operating system environment or as stand-
alone routines. Functions, routines, methods, steps and opera-
tions described herein can be performed in hardware, soft-
ware, firmware or any combination thereof.

Embodiments described herein can be implemented in the
form of control logic in software or hardware or a combina-
tion of both. The control logic may be stored in an information
storage medium, such as a computer-readable medium, as a
plurality of instructions adapted to direct an information pro-
cessing device to perform a set of steps disclosed in the
various embodiments. Based on the disclosure and teachings
provided herein, a person of ordinary skill in the art will
appreciate other ways and/or methods to implement the
invention.

It is also within the spirit and scope of the invention to
implement in software programming or code an of the steps,
operations, methods, routines or portions thereof described
herein, where such software programming or code can be
stored in a computer-readable medium and can be operated on
by a processor to permit a computer to perform any of the
steps, operations, methods, routines or portions thereof
described herein. The invention may be implemented by
using software programming or code in one or more general
purpose digital computers, by using application specific inte-
grated circuits, programmable logic devices, field program-
mable gate arrays, optical, chemical, biological, quantum or

US 9,338,158 B2

27

nanoengineered systems, components and mechanisms may
be used. In general, the functions of the invention can be
achieved by any means as is known in the art. For example,
distributed, or networked systems, components and circuits
can be used. In another example, communication or transfer
(or otherwise moving from one place to another) of data may
be wired, wireless, or by any other means.

A “computer-readable medium” may be any medium that
can contain, store, communicate, propagate, or transport the
program for use by or in connection with the instruction
execution system, apparatus, system or device. The computer
readable medium can be, by way of example only but not by
limitation, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, system,
device, propagation medium, or computer memory. Such
computer-readable medium shall generally be machine read-
able and include software programming or code that can be
human readable (e.g., source code) or machine readable (e.g.,
object code). Examples of non-transitory computer-readable
media can include random access memories, read-only
memories, hard drives, data cartridges, magnetic tapes,
floppy diskettes, flash memory drives, optical data storage
devices, compact-disc read-only memories, and other appro-
priate computer memories and data storage devices. In an
illustrative embodiment, some or all of the software compo-
nents may reside on a single server computer or on any
combination of separate server computers. As one skilled in
the art can appreciate, a computer program product imple-
menting an embodiment disclosed herein may comprise one
or more non-transitory computer readable media storing
computer instructions translatable by one or more processors
in a computing environment.

A “processor” includes any, hardware system, mechanism
or component that processes data, signals or other informa-
tion. A processor can include a system with a general-purpose
central processing unit, multiple processing units, dedicated
circuitry for achieving functionality, or other systems. Pro-
cessing need not be limited to a geographic location, or have
temporal limitations. For example, a processor can perform
its functions in “real-time,” “offline,” in a “batch mode,” etc.
Portions of processing can be performed at different times
and at different locations, by different (or the same) process-
ing systems.

It will also be appreciated that one or more of the elements
depicted in the drawings/figures can also be implemented in a
more separated or integrated manner, or even removed or
rendered as inoperable in certain cases, as is useful in accor-
dance with a particular application. Additionally, any signal
arrows in the drawings/figures should be considered only as
exemplary, and not limiting, unless otherwise specifically
noted.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, product, article, or apparatus that
comprises a list of elements is not necessarily limited only
those elements but may include other elements not expressly
listed or inherent to such process, product, article, or appara-
tus.

Furthermore, the term “or” as used herein is generally
intended to mean “and/or” unless otherwise indicated. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not present),
A is false (or not present) and B is true (or present), and both
A and B are true (or present). As used herein, including the
claims that follow, a term preceded by “a” or “an” (and “the”
when antecedent basis is “a” or “an”) includes both singular

2 <

10

15

20

25

30

35

40

45

50

55

60

65

28

and plural of such term, unless clearly indicated within the
claim otherwise (i.e., that the reference “a” or “an” clearly
indicates only the singular or only the plural). Also, as used in
the description herein and throughout the claims that follow,
the meaning of “in” includes “in”” and “on” unless the context
clearly dictates otherwise. The scope of the present disclosure
should be determined by the following claims and their legal

equivalents.

What is claimed is:

1. A system, comprising:

an application logic and execution layer (ALEL) server

comprising an ALEL engine software program execut-
able by a processor, the ALEL engine configured to
communicate with a plurality of network based applica-
tions each running on a client device communicatively
connected to the ALEL server over a network,

wherein the ALEL server is communicatively connected to

a user experience component (UXC) server over the
network,

wherein the UXC server receives a request from a client

application running on a client device and responds with
a UXC payload including an ALEL authentication token
for the client device to communicate with the ALEL
servet,

wherein the ALEL server receives the ALEL authentica-

tion token from the client device and responds with an
ALEL payload including a content distribution system
(CDS) authentication token for the client device to com-
municate with a CDS server,

wherein the CDS server receives the CDS authentication

token and responds with a CDS payload,

wherein at least one network based application of the plu-

rality of network based applications is built, on the client

device by the client application running on the client

device, using information from disparate sources

including:

the UXC payload from the UXC server for a UXC of the
at least one network based application,

the ALEL payload from the ALEL server foran ALEL of
the at least one network based application, and

the CDS payload from the CDS server for the at least one
network based application to interact with the CDS
servet,

wherein the at least one network based application, which

is built by the client application, runs within the client
application on the client device and is configured for
displaying content stored on the CDS server.

2. The system of claim 1, wherein the ALEL payload
includes program code affecting the UXC or accepting inputs
from the UXC.

3. The system of claim 1, wherein the ALEL server and the
CDS server reside on one or more server machines.

4. The system of claim 1, wherein the ALEL engine is
configured to communicate with the plurality of network
based applications in a first data format, and wherein the
ALEL engine creates a message to the CDS server in a con-
tent server language different from the first data format and
sends the created message in the content server language to
the CDS server.

5. The system of claim 1, wherein the CDS server com-
prises a CDS module configured to manage content in a
computing environment and respond to requests for content
originating from the at least one network based application,
wherein the CDS server can synchronize changes made to
content in the computing environment by any of the plurality
of client devices.

US 9,338,158 B2

29

6. The system of claim 5, wherein the ALEL server and the
CDS server reside on one or more server machines, and
further wherein the ALEL engine and the CDS module reside
on a single server machine.

7. The system of claim 5, wherein the CDS module is part
of the ALEL engine, wherein the ALEL server and the CDS
server reside on different server machines, and wherein the
CDS module communicates with the CDS server over a net-
work.

8. The system of claim 5, wherein the ALEL engine is
configured to communicate with the at least one network
based application in a first data format, and wherein the ALEL
engine creates a message to the CDS module in a content
server language different from the first data format and sends
the created message in the content server language to the CDS
module.

9. The system of claim 8, wherein the message in the first
data format comprises an Hypertext Transfer Protocol/Java-
Script Object Notation (HTTP/JSON) Application Program-
ming Interface (API) request.

10. The system of claim 1, wherein the CDS payload from
the CDS server comprises a location of the CDS server and
information identifying an interface of the CDS server.

11. The system of claim 10, wherein the CDS payload from
the CDS server further comprises information specifying
request message formats for interacting with the CDS server.

12. The system of claim 1, further comprises a notifier,
wherein the CDS server is further configured to alert the
ALEL engine via the notifier one or more content policies
applicable to the client device.

13. A computer program product comprising at least one
non-transitory computer readable medium storing instruc-
tions translatable by at least one processor to implement:

an application logic and execution layer (ALEL) engine on

an ALEL server, the ALEL engine configured to com-
municate with a plurality of network based applications
each running on a client device communicatively con-
nected to the ALEL server over a network,

wherein the ALEL server is communicatively connected to

a user experience component (UXC) server over the
network,

wherein the UXC server receives a request from a client

application running on a client device and responds with
a UXC payload including an ALLEL authentication token
for the client device to communicate with the ALEL
servet,

wherein the ALEL server receives the ALEL authentica-

tion token from the client device and responds with an
ALEL payload including a content distribution system
(CDS) authentication token for the client device to com-
municate with a CDS server,

wherein the CDS server receives the CDS authentication

token and responds with a CDS payload,

wherein at least one network based application of the plu-

rality of network based applications is built, on the client

device by the client application running on the client

device, using information from disparate sources

including:

the UXC payload from the UXC server for a UXC of the
at least one network based application,

the ALEL payload from the ALEL server foran ALEL of
the at least one network based application, and

the CDS payload from the CDS server for the at least one
network based application to interact with the CDS
servet,

wherein the at least one network based application,
which is built by the client application, runs within the

20

30

35

40

45

50

60

30

client application on the client device and is config-
ured for displaying content stored on the CDS server.

14. The computer program product of claim 13, wherein
the ALEL payload includes program code affecting the UXC
or accepting inputs from the UXC.

15. The computer program product of claim 13, wherein
the ALEL server and the CDS server reside on one or more
server machines.

16. The computer program product of claim 13, wherein
the ALEL engine is configured to communicate with the
plurality of network based applications in a first data format,
and wherein the ALEL engine creates a message to the CDS
server in a content server language different from the first data
format and sends the created message in the content server
language to the CDS server.

17. The computer program product of claim 13, wherein
the at least one non-transitory computer readable medium
storing instructions translatable by the at least one processor
to further implement:

a CDS module configured to manage content in a comput-
ing environment and respond to requests for content in
the computing environment originating from the at least
one network based application, and further wherein the
CDS module is configured to synchronize changes made
to content in the computing environment by any of the
network based applications.

18. The computer program product of claim 17, wherein
the ALEL engine is configured to communicate with the at
least one network based application in a first data format, and
wherein the ALEL engine creates a message to the CDS
module in a language that is different from the first data
format and that is understandable by the CDS module, and
sends the created message to the CDS server.

19. The computer program product of claim 17, wherein
the ALEL engine and the CDS module reside on a single
server machine.

20. The computer program product of claim 17, wherein
the at least one non-transitory computer readable medium
storing instructions translatable by the at least one processor
to further implement a notifier, wherein the CDS module is
further configured to alert the ALEL engine via the notifier
one or more content policies applicable to the at least one
network based application.

21. The computer program product of claim 13, wherein
the CDS server is connected, either directly or indirectly
through the ALEL server, to the at least one network based
application over the network.

22. The computer program product of claim 13, wherein
the CDS payload from the CDS server comprises a location of
the CDS server and information identifying an interface of the
CDS server.

23. The computer program product claim 22, wherein the
CDS payload from the CDS server further comprises infor-
mation specifying request message formats for interacting
with the CDS server.

24. A method, comprising:

receiving, at an application logic and execution layer
(ALEL) engine running on an ALEL server, a request
with an ALEL authentication token from a client device,
the ALEL engine configured to communicate with a
plurality of network based applications each running on
aclient device communicatively connected to the ALEL
server over a network,

wherein the ALEL server is communicatively connected to
a user experience component (UXC) server over the
network,

US 9,338,158 B2

31

wherein the ALEL authentication token is communicated
to the client device via a UXC payload from the UXC
server;

responsive to the request with the ALEL authentication

token from the client device, the ALEL server commu-
nicating an ALEL payload to the client device, the ALEL
payload including a content distribution system (CDS)
authentication token for the client device to communi-
cate with a CDS server,

wherein the CDS server receives the CDS authentication

token and responds with a CDS payload,

wherein at least one network based application of the plu-

rality of network based applications is built, on the client

device by the client application running on the client

device, using information from disparate sources

including:

the UXC payload from the UXC server for a UXC of the
at least one network based application,

the ALEL payload from the ALEL server foran ALEL of
the at least one network based application, and

the CDS payload from the CDS server for the at least one
network based application to interact with the CDS
servet,

wherein the at least one network based application,
which is built by the client application, runs within the
client application on the client device and is config-
ured for displaying content stored on the CDS server.

25. The method of claim 24, wherein the ALEL payload
includes program code affecting the UXC or accepting inputs
from the UXC.

26. The method of claim 24, wherein the ALEL server and
the CDS server reside on one or more server machines.

27. The method of claim 24, wherein the ALEL engine is
configured to communicate with the plurality of network
based applications in a first data format, and wherein the
ALEL engine creates a message to the CDS server in a con-
tent server language different from the first data format and
sends the created message in the content server language to
the CDS server.

28. A system, comprising:

an application logic and execution layer (ALEL) server

comprising an ALEL engine software program execut-
able by a processor, the ALEL engine configured to
communicate with a plurality of network based applica-
tions each running on a client device communicatively
connected to the ALEL server over a network,

wherein the ALEL server is communicatively connected to

a user experience component (UXC) server over the
network,

wherein the UXC server receives a request from an appli-

cation running on a client device and responds with a

15

20

25

30

35

40

45

50

32

UXC payload including an ALEL authentication token
for the client device to communicate with the ALEL
server,

wherein the ALEL server receives the ALEL authentica-

tion token and responds with an ALEL payload includ-
ing a content distribution system (CDS) authentication
token for the client device to communicate with a CDS
server,

wherein the CDS server receives the CDS authentication

token and responds with a CDS payload,

wherein at least one network based application of the plu-

rality of network based applications is built, on the client

device by the application running on the client device,

using information from disparate sources including:

the UXC payload from the UXC server for constructing
a UXC, the UXC further including one of: a first type
of UXC to enable a graphical user interface of a first
type of client device platform or a second type of
UXC to enable a graphical user interface of a second
type of client device platform different than the first
type of client device platform;

the ALEL payload from the ALEL server, the ALEL
payload further including program instructions to
define functionality of the at least one network based
application; and

the CDS payload from the CDS server, the CDS payload
further including information of a location of the CDS
server and processes for interacting with the CDS
server.

29. The system of claim 28, wherein the ALEL program
instructions enable the at least one network based application,
which is built by the application running on the client device
and which runs within the application, to receive inputs from
the UXC, process data, and generate outputs to the UXC.

30. The system of claim 28, wherein the CDS payload
includes information associated with an organization’s secu-
rity criteria, data policies, or a combination thereof.

31. The system of claim 28, wherein the first type of client
device includes a mobile device and the second type of client
device includes a desktop computer.

32. The system of claim 28, wherein the client device
includes a local cache including content received from the
CDS server.

33. The system of claim 28, wherein the CDS payload is
received from a first organization having control over the
CDS server and wherein at least one of the ALEL payload or
the UXC payload is received from a second organization
different than the first organization.

34. The system of claim 28, wherein the CDS server com-
prises a CDS module configured to communicate with the
ALEL server.

